IN VIVO IMAGING USING LIPOSOMAL PHAGE DISPLAY PEPTIDE DERIVATES TARGETING INTEGRINS IN ACTIVATED LEUKOCYTES

TANJA-MARIA RANTA¹², HELI VALTANEN¹, SAMI KAUKINEN¹, OTTO C. BOERMAN⁴, ILKKA SIMPURA¹, YING ZHU¹, OULA PENATE MEDINA¹, WIM J.G. OYEN⁴ and KALEVI KAIREMO¹³

¹Cancer Targeting Technologies Oy Viikinkaari 4 C, 00790 Helsinki, Finland, ²Department of Biosciences and ³Department of Oncology, Institute of Clinical Medicine, FIN-00014 University of Helsinki, Finland, ⁴Department of Nuclear Medicine, University of Nijmegen, The Netherlands

A bioactive peptide obtained recently by phage display is a specific ligand to the leukocyte β² integrins, αMβ² integrin (CD11/CD18). This LLG peptide is a nonapeptide which is dependent on two disulfide bridges that constrain the peptide structure. This peptide is known to inhibit the β² integrin-mediated leukocyte cell adhesion and binds to the cation-sensitive I-domain of the integrin a subunit. Biodistribution of the phage display peptide LLG (14 amino acids) and its conjugates in the targeting moiety were studied in various animal models. Additionally peptidoliposomal derivatives were constructed for targeted drug delivery.

The affinity of radiolabeled (¹¹¹In) peptides was determined in a competitive assay was found to be of high nanomolar range. The biodistribution, detected both by external imaging and tissue sampling, did not reveal any specific accumulation sites and the peptide was rapidly excreted via kidneys. In several animal inflammatory/ infectious disease models excellent targeting signals based on biodistribution analysis were observed. We used E. coli LPS and thioglycolate inflammation models in mice (several locations), S. aureus infections in rats (thigh muscle) and E. coli infections in rabbits (thigh muscle). Special attention was paid to different isomeric conformations (disulfide bridge orientation) and their effect to biodistribution.

The possibilities to use LLG as a therapeutic agent had been studied, absolute tumor-to-blood ratio at 24 hrs using labeled peptide as leukemic tumor targeting agent was 4.7. Pegylation of LLG increased circulation time. The LLG can also function as a therapeutic agent on surface of liposome, resulting in a even longer circulation half-life. Using liposome we can modify drastically the pharmacokinetics and dynamics of the peptide. Our animal models (mice, rats, rabbits) demonstrated excellent in vivo targeting of infectious and inflammatory tissue.