CRYSTAL STRUCTURE OF THE α-ACTININ ROD: FOUR SPECTRIN REPEATS FORMING A TIGHT DIMER

JARI YLÄNNE, KLAUS SCHEFFZEK, PAUL YOUNG* and MATTI SARASTE†
European Molecular Biology Laboratory, EMBL, Structural and Computational Biology Programme, Meyerhofstrasse 1, Postfach 102209, D-69012, Heidelberg, Germany

α-Actinin is a ubiquitously expressed protein found in numerous actin structures. α-Actinin consists of an actin-binding domain, a rod domain, and a C-terminal domain and functions as a homodimer to cross-link actin filaments. The rod domain determines the distance between cross-linked actin filaments and also serves as an interaction site for several cytoskeletal and signalling proteins. The α-actinin rod is composed of four spectrin repeats and it forms a tight antiparallel dimer. The structure is twisted, its symmetry properties allow prediction of the orientation of parallel and antiparallel cross-linked actin filaments. We suggest that a conserved acidic surface forms an interaction area for several cytoplasmic tails of transmembrane proteins that are involved in recruitment of α-actinin to the plasma membrane.

*Current address: Department of Neurobiology, Duke University Medical Center, Durham, USA
†Deceased