CAFFEINE AND PENTOXYFFILLINE INHIBITED ACTION OF SOME CHEMICAL MUTAGENS

KATARZYNA ULANOWSKA, JACEK PIOSIK, AGATA CZYŻ, JAN KAPUŚCINSKI and GRZEGORZ WĘGRZYN

1Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland, 2Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland, 3Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland

Caffeine and pentoxyffilline are methyloxantines, which are compounds present in drugs (including anti-cancer drugs), as well as in popular drinks like tea, coffee or coke. There are data suggesting that methyloxantines have a protective influence against mutagens – namely that the presence of these chemicals in the cell can prevent DNA damage caused by mutagenic agents. One of the possibilities to explain the mechanism of methyloxantine action as anti-mutagenic agents is that they form aggregates with chemical mutagens that have an aromatic ring. Assuming that this hypothesis is correct, such activity would decrease the levels of free mutagens in the cell. Using spectrophotometric methods and the statistic-thermodynamic model of mixed aggregation, we calculated the association constants (K_{AC}) for complexes of ICR 191 (a derivative of acridine) with caffeine and pentoxyffilline. The results of our experiments indicated that the preventive influence of methyloxantines is probably a result of the formation of $\pi-\pi$ stacking complexes between methyloxantines and aromatic mutagens. Preliminary data employing the Vibrio harveyi assay for mutagen detection confirmed the results of the in vitro experiments.