A NEW PHENOTHIAZINE DERIVATIVE ALTERS THE FLUIDITY AND THERMOTROPIC BEHAVIOUR OF PHOSPHATIDYLCHOLINE MODEL MEMBRANES

OLGA WESOŁOWSKA¹*, ANDRZEJ B. HENDRICH¹, NOBORU MOTOHASHI² and KRYSTYNA MICHALAK¹

¹Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 10, Wrocław, 50–368 Poland, ²Department of Medicinal Chemistry, Meiji Pharmaceutical University, 2–522–1 Noshio, Kiyose–shi, Tokyo 204–8588, Japan

Phenothiazine derivatives, widely used as effective tranquilizers, have lately attracted attention as effective multidrug resistance modulators. The interactions of a newly synthesised phenothiazine derivative, 2-trifluoromethyl-10-(4-[methylsulfonylamid]buthyl)-phenothiazine (FPhMS), with phosphatidylcholine model membranes were studied by means of microcalorimetry and fluorescence spectroscopy. FPhMS showed a biphasic effect on the DPPC main phase transition parameters. The transition temperature and enthalpy change decreased up to a drug:lipid molar ratio of 0.06, and then increased above this concentration. FPhMS also caused a gradual broadening of transition peaks for all the concentrations studied. DPH (1,6-diphenyl-1,3,5-hexatriene) polarization measurements showed that the phenothiazine derivative caused a decrease in bilayer order in the liquid crystalline state and an increase in the gel state. Fluorescence spectroscopy also revealed that FPhMS at a concentration of 100 µM influenced the DPPC main phase transition parameters: its melting temperature was decreased and the transition range was broadened. It was concluded that the phenothiazine derivative exerts a cholesterol-like effect on the model membrane and at higher concentrations induces a new mode of bilayer packing. Similarly to cholesterol, the FPhMS molecule also possesses a rigid aromatic ring system, and is probably located near the hydrophilic/hydrophobic interface of lipid leaflet. Like the liquid-ordered phase induced by cholesterol at high concentrations, FPhMS:DPPC mixtures are characterised by low cooperativity and reduced molecule mobility compared to pure lipid.

* E-mail: olawes@biofiz.am.wroc.pl